Taking into account both gain/loss and time-dependent atomic scattering length, this paper analytically derives an exact bright solitary wave in a cigar-shaped attractive condensate in the presence of an expulsive parabolic potential. Due to the balance of the scattering length and gain/loss, the bright solitary wave is shown to have constant amplitude. Especially, it is found that the bright solitary wave is accelerated by expulsive force, whose velocity can be modulated by changing the axial and transverse angular frequencies. The results are in good agreement with the experimental observations by Khaykovich et al (2002 Science 296 1290).
Taking into account both the intrinsic curvature and Zeeman effects, persistent currents in a multi-walled carbon nanotorus are explored by using a supercell method, within the tight-binding formalism. It is shown that in the absence of the Zeeman effect, the intrinsic curvature induces some dramatic changes in energy spectra and thus changes in the shape of the flux-dependent current. A paramagnetism diamagnetism transition is observed. With consideration of the Zeeman splitting energy, the period of persistent current is destroyed, and a diamagnetism-paramagnetism transition is obtained at high magnetic field. In addition, we further explore the effect of external electric field energy (Eef) on persistent current, indicating that it changes unmonotonously with Eef.
By using Darboux transformation, this paper studies analytically the nonlinear dynamics of a one-dimensional growing Bose-Einstein condensate (BEC). It is shown that the growing model has an important effect on the amplitude of the soliton in the condensates. In the absence of the growing model, there exhibits the stable alternate bright solitons in the condensates. In the presence of the growing model, the obtained results show that the amplitude of the bright soliton decreases (increases) for the BEC growing coefficient Ω 〈 0 (Ω 〉 0). Furthermore, we propose experimental protocols to manipulate the amplitude of the bright soliton by varying the scattering length via the Feshbach resonance in the future experiment.