In this paper,the complex multi-symplectic method and the implementation of the generalized sinhGordon equation are investigated in detail.The multi-symplectic formulations of the generalized sinh-Gordon equation in Hamiltonian space are presented firstly.The complex method is introduced and a complex semi-implicit scheme with several discrete conservation laws(including a multi-symplectic conservation law(CLS),a local energy conservation law(ECL) as well as a local momentum conservation law(MCL)) is constructed to solve the partial differential equations(PDEs) that are derived from the generalized sinh-Gordon equation numerically.The results of the numerical experiments show that the multi-symplectic scheme has excellent long-time numerical behavior and high accuracy.
The wave propagation problem in the nonlinear periodic mass-spring structure chain is analyzed using the symplectic mathematical method. The energy method is used to construct the dynamic equation, and the nonlinear dynamic equation is linearized using the small parameter perturbation method. Eigen-solutions of the symplectic matrix are used to analyze the wave propagation problem in nonlinear periodic lattices. Nonlinearity in the mass-spring chain, arising from the nonlinear spring stiffness effect, has profound effects on the overall transmission of the chain. The wave propagation characteristics are altered due to nonlinearity, and related to the incident wave intensity, which is a genuine nonlinear effect not present in the corresponding linear model. Numerical results show how the increase of nonlinearity or incident wave amplitude leads to closing of transmitting gaps. Comparison with the normal recursive approach shows effectiveness and superiority of the symplectic method for the wave propagation problem in nonlinear periodic structures.