Since there is lack of methodology to assess the performance of defogging algorithm and the existing assessment methods have some limitations,three new methods for assessing the defogging algorithm were proposed.One was using synthetic foggy image simulated by image degradation model to assess the defogging algorithm in full-reference way.In this method,the absolute difference was computed between the synthetic image with and without fog.The other two were computing the fog density of gray level image or constructing assessment system of color image from human visual perception to assess the defogging algorithm in no-reference way.For these methods,an assessment function was defined to evaluate algorithm performance from the function value.Using the defogging algorithm comparison,the experimental results demonstrate the effectiveness and reliability of the proposed methods.
A trajectory generator based on vehicle kinematics model was presented and an integrated navigation simulation system was designed.Considering that the tight relation between vehicle motion and topography,a new trajectory generator for vehicle was proposed for more actual simulation.Firstly,a vehicle kinematics model was built based on conversion of attitude vector in different coordinate systems.Then,the principle of common trajectory generators was analyzed.Besides,combining the vehicle kinematics model with the principle of dead reckoning,a new vehicle trajectory generator was presented,which can provide process parameters of carrier anytime and achieve simulation of typical actions of running vehicle.Moreover,IMU(inertial measurement unit) elements were simulated,including accelerometer and gyroscope.After setting up the simulation conditions,the integrated navigation simulation system was verified by final performance test.The result proves the validity and flexibility of this design.
We present two haze removal algorithms for single image based on haziness analysis.One algorithm regards haze as the veil layer,and the other takes haze as the transmission.The former uses the illumination component image obtained by retinex algorithm and the depth information of the original image to remove the veil layer.The latter employs guided filter to obtain the refined haze transmission and separates it from the original image.The main advantages of the proposed methods are that no user interaction is needed and the computing speed is relatively fast.A comparative study and quantitative evaluation with some main existing algorithms demonstrate that similar even better quality results can be obtained by the proposed methods.On the top of haze removal,several applications of the haze transmission including image refocusing,haze simulation,relighting and 2-dimensional(2D)to 3-dimensional(3D) stereoscopic conversion are also implemented.