The Miaoershan-Yuechengling complex pluton is the largest granitoid complex in the western Nanling metallogenic belt with a surface exposure of >3000 km2.The complex pluton is composed of an early stage granitoid batholith and late stage small intrusions.The early stage batholith contains mainly medium-grained porphyritic mica granite and porphyritic monzonite granite,whereas the late stage intrusions are composed of muscovite granite porphyry and muscovite monzonitic granite.There are many W-Sn-Mo-Pb-Zn-Cu ores in the contact zone between the batholith and strata,forming an ore-rich belt around the batholith.Based on zircon LA-ICP-MS U-Pb ages,the southwestern part of the early stage batholith formed at 228.7 ± 4.1 Ma(MSWD = 2.49),with slightly earlier magmatic activity at 243.0 ± 5.8 Ma(MSWD = 2.62).The Yuntoujie muscovite granite was associated with W-Mo mineralization and has a zircon LA-ICP-MS U-Pb age of 216.8 ± 4.9 Ma(MSWD = 1.44).The Re-Os isochron age of molybdenite from the Yuntoujie W-Mo ore was 216.8 ± 7.5 Ma(MSWD = 11.3).Our new isotope data suggest that the late stage intrusive stocks from the southwestern Miaoershan-Yuechengling batholith were closely associated with W-Mo mineralization from the Indosinian period.These new results together with previous isotope data,suggest that South China underwent not only the well-known Yanshanian mineralization event,but also a widespread Indosinian metallogenic event during the Mesozoic period.Therefore,South China has a greater potential for Indosinian mineralization than previously thought such that more attention should be given to the Indosinian ore prospecting in South China.
Copper is a moderately incompatible chalcophile element.Its behavior is strongly controlled by sulfides.The speciation of sulfur is controlled by oxygen fugacity.Therefore,porphyry Cu deposits are usually oxidized(with oxygen fugacities > AFMQ +2)(Mungall 2002;Sun et al.2015).The problem is that while most of the magmas at convergent margins are highly oxidized,porphyry Cu deposits are very rare,suggesting that high oxygen fugacity alone is not sufficient.Partial melting of mantle peridotite even at very high oxygen fugacities forms arc magmas with initial Cu contents too low to form porphyry Cu deposits directly(Lee et al.2012;Wilkinson 2013).Here we show that partial melting of subducted young oceanic slabs at high oxygen fugacity(>AFMQ +2) may form magmas with initial Cu contents up to >500 ppm,favorable for porphyry mineralization.Pre-enrichment of Cu through sulfide saturation and accumulation is not necessarily beneficial to porphyry Cu mineralization.In contrast,remelting of porphyritic hydrothermal sulfide associated with iron oxides may have major contributions to porphyry deposits.Thick overriding continental crust reduces the "leakage" of hydrothermal fluids,thereby promoting porphyry mineralization.Nevertheless,it is also more difficult for ore forming fluids to penetrate the thick continental crust to reach the depths of 2—4 km where porphyry deposits form.