This paper presents a new test data compression/decompression method for SoC testing,called hybrid run length codes. The method makes a full analysis of the factors which influence test parameters:compression ratio,test application time, and area overhead. To improve the compression ratio, the new method is based on variable-to-variable run length codes,and a novel algorithm is proposed to reorder the test vectors and fill the unspecified bits in the pre-processing step. With a novel on-chip decoder, low test application time and low area overhead are obtained by hybrid run length codes. Finally, an experimental comparison on ISCAS 89 benchmark circuits validates the proposed method
We investigate the negative bias temperature instability (NBTI) of 90nm pMOSFETs under various temperatures and stress gate voltages (Vg). We also study models of the time (t) ,temperature (T) ,and stress Vg dependence of 90nm pMOSFETs NBTI degradation. The time model and temperature model are similar to previ- ous studies, with small difference in the key coefficients. A power-law model is found to hold for Vg, which is different from the conventional exponential Vg model. The new model is more predictive than the exponential model when taking lower stress Vg into account.