张欣欣
- 作品数:1 被引量:24H指数:1
- 供职机构:西北农林科技大学机械与电子工程学院更多>>
- 发文基金:中央高校基本科研业务费专项资金国家自然科学基金国家高技术研究发展计划更多>>
- 相关领域:农业科学自动化与计算机技术更多>>
- 基于模糊集理论的苹果表面阴影去除方法被引量:24
- 2014年
- 为了提高阴影影响下的苹果目标提取精度,该文提出了一种基于模糊集理论的苹果表面阴影去除方法。该方法将含阴影图像作为一个模糊矩阵,利用所设计的隶属函数进行图像去模糊化处理,达到图像增强的目的,进而削弱苹果表面阴影对目标分割的影响。为了验证算法的有效性,采用基于灰度阈值和基于颜色聚类2种算法对去除阴影前后的目标图像进行分割,并选用分割误差、假阳性率、假阴性率和重叠系数4项指标进行了分析比较,试验结果表明,去除阴影之后,2种分割算法所提取的苹果目标区域较去除阴影之前有了较大的提高,2种分割算法的平均分割误差分别为3.08%和3.46%,比去除阴影之前降低了20.53%和25.92%,假阳性率、假阴性率分别降低了29.79%、29.98%和21.25%、29.83%,重叠系数分别提高30.96%和24.55%。与灰度变换法去除阴影后分割的效果比较表明,该方法的平均分割误差降低了29.23%,假阳性率、假阴性率分别降低了30.97%和20.40%,重叠系数提高了26.60%;与直方图均衡化法的比较表明,分割误差降低了25.59%,假阳性率、假阴性率分别降低了22.74%和27.56%,而重叠系数提高了27.43%。这一系列数据表明,基于模糊集理论的阴影去除方法具有较好的阴影去除效果。经过去除阴影后,可以获得更高的目标分割性能,目标提取精度显著提高,表明将模糊集方法应用于苹果目标的阴影去除可以有效地提高苹果目标区域的提取精度。
- 宋怀波张卫园张欣欣邹睿智
- 关键词:图像处理图像分割模糊集苹果